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Properties of the Olami-Feder-Christensen �OFC� model of earthquakes are studied by numerical simula-
tions. The previous study indicated that the model exhibited “asperity”-like phenomena, i.e., the same region
ruptures many times near periodically �T. Kotani et al., Phys. Rev. E 77, 010102�R� �2008��. Such periodic or
characteristic features apparently coexist with power-law-like critical features, e.g., the Gutenberg-Richter law
observed in the size distribution. In order to clarify the origin and the nature of the asperity-like phenomena,
we investigate here the properties of the OFC model with emphasis on its stress distribution. It is found that the
asperity formation is accompanied by self-organization of the highly concentrated stress state. Such stress
organization naturally provides the mechanism underlying our observation that a series of asperity events
repeat with a common epicenter site and with a common period solely determined by the transmission param-
eter of the model. Asperity events tend to cluster both in time and in space.
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I. INTRODUCTION

Statistical properties of earthquakes have attracted much
interest in seismology as well as in statistical physics �1,2�.
Statistical properties of earthquakes are often characterized
by power laws, e.g., the Gutenberg-Richter �GR� law ob-
served in earthquake size distribution, or the Omori law ob-
served in the time evolution of aftershocks frequency. The
concept of “self-organized criticality” �SOC� was advocated
by P. Bak �3�. In this view, the Earth’s crust is supposed to be
in a critical state, while seismicity has a close analogy to
critical phenomena of thermodynamic second-order transi-
tion.

Several statistical models of earthquakes embodying such
SOC features of earthquakes have been proposed and stud-
ied. One standard model is the so-called spring-block or the
Burridge-Knopoff �BK� model, in which an earthquake fault
is modeled as an assembly of blocks mutually connected via
elastic springs which are slowly driven by external force
�4–6�. While this model sometimes exhibits critical or near-
critical properties under restricted conditions, generic prop-
erties of this model are not necessarily critical, often exhib-
iting “characteristic” properties accompanied by
characteristic energy and time scales. For example, the BK
model with the nearest-neighbor �7,8� or the long-range in-
teraction �9� has turned out to exhibit either “supercritical,”
“subcritical,” or “near-critical” behavior depending on the
parameters of the model.

Another statistical model extensively studied in statistical
physics in the context of SOC might be the so-called OFC
model, which was first introduced by Olami, Feder, and
Christensen �OFC� as a further simplification of the BK
model �10�. It is a two-dimensional lattice model where the
rupture propagates from lattice site to its nearest-neighbor
sites in a nonconservative manner, often causing multisite
seismic events or “avalanches.” Numerical studies have re-
vealed that the OFC model exhibits apparently critical prop-
erties such as the GR law �10–12� or the Omori law �13�,
although there still remains controversy concerning whether
the behavior of this model is strictly critical �12� or only

approximately so �14–16�. In any case, the OFC model has
been regarded as a typical nonconservative model exhibiting
SOC.

Earthquakes in nature sometimes exhibit characteristic
properties accompanied by characteristic energy and time
scales �1,2�. In contrast to its critical feature, possible “char-
acteristic” feature of the OFC model, if any, has attracted
much less attention so far. Botani and Delamote observed
that synchronized clusters of various sizes existed in the
steady state of the OFC model with a large, but finite lifetime
�17�. More recently, Kotani, Yoshino, and Kawamura have
revealed strikingly characteristic features of the model, by
demonstrating that the local recurrence-time distribution of
the OFC model exhibits a sharp �-function-like peak corre-
sponding to rhythmic recurrence of events with a fixed pe-
riod uniquely determined by the transmission parameter of
the model �18�, together with a power-law-like tail corre-
sponding to scale-free recurrence of events. In fact, the OFC
model was found to exhibit phenomena closely resembling
the “asperity” known in seismology. Such an asperity repeats
to rupture sequentially, often more than ten times, with al-
most the same period and with the same site as an epicenter
�triggering site� �18�. Statistics of epicenter sequences of the
model was also studied by Peixoto and Prado in the frame-
work of a growing complex network �19�.

In the present paper, following Ref. �18�, we further in-
vestigate spatiotemporal correlations of the OFC model, with
particular emphasis on its characteristic features. In particu-
lar, we wish to unravel more detailed properties of the “as-
perity” involved in the model. It is found that, in the forma-
tion of the asperity, self-organization process occurs in which
the stress in the asperity region gets more and more “quan-
tized” to discretized values. This self-organization process
promotes an epicenter of the preceding event to become an
epicenter of the next event again with the period uniquely
determined by the transmission parameter of the model. It is
also observed that the epicenter of large events tends to lie at
the tip �or at the corner� of the rupture zone, rather than in its
interior.

After defining the model and explaining some of its basic
properties in Sec. II, we present our numerical data of the
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local recurrence-time distribution and of the stress distribu-
tion in Sec. III. Various asperity characteristics are investi-
gated in detail in Sec. IV. The relation between the self-
organization of the highly concentrated stress state and the
asperity characteristics are clarified. Section V is devoted to
summary and discussion. Analysis of the time evolution of
the stress concentration is given in Appendix.

II. MODEL

In the OFC model, “stress” variable f i �f i�0� is assigned
to each site on a square lattice with L�L sites. Initially, a
random value in the interval �0,1� is assigned to each f i,
while f i is increased with a constant rate uniformly over the
lattice until, at a certain site i, the f i value reaches a thresh-
old, fc=1. Then, the site i “topples” and a fraction of stress
�f i �0���0.25� is transmitted to its four nearest neighbors,
while f i itself is reset to zero. If the stress of some of the
neighboring sites j exceeds the threshold, i.e., f j � fc=1, the
site j also topples, distributing a fraction of stress �f j to its
four nearest neighbors. Such a sequence of topplings contin-
ues until the stress of all sites on the lattice becomes smaller
than the threshold fc. A sequence of toppling events, which is
assumed to occur instantaneously, corresponds to one seis-
mic event or an avalanche. After an avalanche, the system
goes into an interseismic period where uniform loading of f
is resumed, until some of the sites reach the threshold and
the next avalanche starts.

The transmission parameter � measures the extent of non-
conservation of the model. The system is conservative for
�=0.25, and is nonconservative for ��0.25. A unit of time
t is taken to be the time required to load f from zero to unity.

In the OFC model, boundary conditions play a crucial
role. For example, SOC state is realized under open bound-
ary conditions, but is not realized under periodic boundary
conditions. The model under open boundary conditions goes
into a special transient state where events of size 1 �single-
site events� repeat periodically with period 1−4� �20�. These
single-site events occur in turn in a spatially random manner,
but after time 1−4�, the same site topples repeatedly. Al-
though such a periodic state consisting of single-site events
is a steady state under periodic boundary conditions, it is not
a steady state under open boundary conditions because of the
boundary. Indeed, clusters are formed near the boundary,
within which the stress values are more or less uniform, and
gradually invade the interior destroying the periodic state.
Eventually, such clusters span the entire lattice, giving rise to
an SOC-like steady state. Such clusters might be formed via
synchronization between the interior sites and the boundary
sites, the latter having a slower effective loading rate due to
the boundary �20�.

In our simulation, the lattice studied contains 256�256
sites with open boundary conditions, the pseudo-sequential
updating proposed by Pinho et al. being utilized �21�. Total
of 2�109 avalanches are generated where initial 108 events
are discarded as transients to ensure that the measurement is
done in the steady state.

It has been realized that the OFC model exhibits an SOC-
like critical or near-critical property. This is most clearly ex-

emplified in a power-law-like size distribution of avalanches.
As an example, we show in Fig. 1 the size distribution of
avalanches on a log-log plot for several values of the trans-
mission parameter �. The avalanche size s is defined by the
total number of “topples” in a given avalanche, which could
be larger than the number of toppled sites because multi-
toppling is possible in a given avalanche. In fact, it is ob-
served that multi-toppling rarely occurs in the model except
in the conservation limit or in the regime very close to it.

As can be seen from Fig. 1, a straight-line behavior cor-
responding to a power-law is observed consistently with the
previous works. The slope representing the B value is not
universal varying from �0.90 to �0.22 as � is varied from
0.17 to 0.245. The power-law feature is weakened as one
approaches the conservation limit. The B value is known to
come around 2/3 in real seismicity, while the B value of the
OFC model is distributed around this value �10�.

Hergarten et al. observed that the OFC model also exhib-
ited another well-known power-law feature of seismicity, i.e.,
the Omori law �or the inverse Omori law� describing the
time evolution of the frequency of aftershocks �foreshocks�
�13�. We show in Fig. 2�a� on a log-log plot the frequency of
aftershocks as a function of the time elapsed after the main
shock t. As a main shock, we consider an event of its size
greater than s�sc=100. Again, a straight-line behavior cor-
responding to a power-law is observed consistently with Ref.
�13�. Note that Hergarten et al. imposed free boundary con-
ditions, while we impose open boundary conditions here.
The slope representing the Omori exponent p is again not
universal depending on the parameter � as p=0.84, 0.69 and
0.03 for �=0.17, 0.20 and 0.23, respectively. Since the p
value is known to come around unity in real seismicity, the p
value of the OFC model is not necessarily close to real ob-
servation.

Similar results are obtained also for foreshocks: See Fig.
2�b�. Here the p value describing the inverse Omori law is
equal to p=0.71, 0.50, and 0.01 for �=0.17, 0.20, and 0.23,
respectively. As one approaches the conservation limit
�=0.25, both aftershocks and foreshocks tend to go away.
Our results are consistent with the results reported by Her-
garten et al. �13�.
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FIG. 1. �Color online� The size distribution of seismic events
�avalanches� for various values of the transmission parameter �.
The slope of the data gives the value of 1+B, which is shown in the
figure.
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As such, the OFC model certainly possesses critical or
near-critical properties like the GR law and the Omori law.
By contrast, its characteristic properties, most notably re-
vealed in the existence of asperity �18�, have received much
less attention. In the next section, we investigate such char-
acteristic properties of the OFC model, which apparently co-
exist with the critical properties mentioned in this section.

III. SIMULATION RESULTS ON THE CHARACTERISTIC
PROPERTIES

In this section, we report on our simulation results on the
local recurrence-time distribution and the stress distribution,
which turn out to exhibit pronounced characteristic proper-
ties.

Let us begin with the definition of the local recurrence
time. In case of the globally defined recurrence time, the next
avalanche to measure recurrence may occur anywhere on the
entire lattice. In view of the ordinary sense of earthquake
recurrence, however, it might be more natural to introduce
the recurrence time T and its distribution function P�T� lo-

cally. Thus, one may define the local recurrence-time as the
time passed until the next avalanche occurs with its epicenter
lying in a vicinity of the preceding avalanche, say, within
distance r �in units of lattice spacing� of the epicenter of the
preceding event, rather than in some remote place far away
from the epicenter of the preceding event. One can also in-
troduce the size threshold sc to look at the recurrence of large
events of their size greater than s�sc.

The local recurrence-time distribution of the model, P�T�,
was calculated in Ref. �18� with varying the range parameter
rc. The computed P�T� exhibited a sharp �-function-like
peak at T=T�=1−4� which grew as rc got smaller, indicat-
ing that many �though not all� events of the OFC model
repeated with a fixed time interval T=T�. The peak position
turned out to be independent of the range parameter rc, the
size threshold sc, and the lattice size �as long as it was not
too small�.

In Fig. 3, we show the local recurrence-time distribution
P�T� for avalanches whose size is greater than s�sc=100
for fixed rc=10, with varying the transmission parameter �
toward the conservation limit �=0.25. As � is increased to-
ward �=0.25, the �-function peak is gradually suppressed
with keeping its position strictly at T=1−4�. For �=0.245,
the �-function peak is no longer appreciable at the expected
position T=1–4�0.245=0.02: See the arrow in the figure.
Clearly, the �-function peak of P�T� goes away toward the
conservation limit �=0.25.

As can be seen from Fig. 3, in the longer time regime
T�T�, P�T� exhibits behaviors close to power laws �18�,
whereas the deviation from the power law becomes appre-
ciable when one approaches the conservation limit. Hence, in
earthquake recurrence of the model, the characteristic or pe-
riodic feature, i.e., a sharp peak in P�T� at T=T�, and the
critical feature, i.e., power-law-like behaviors of P�T� at
T�T�, coexist. Note that, while the peak at T=T� is sharp, it
is not infinitely sharp with a finite intrinsic width as shown in
the inset of Fig. 3. The peak has an asymmetric shape with a
tail on shorter-T side.

Furthermore, as was already noticed in Ref. �18�, the pe-
riodic events contributing to a sharp peak of P�T� �“peak
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FIG. 2. �Color online� The time dependence of the frequency of
aftershocks �a�, and of foreshocks �b�, on a log-log plot for several
values of the transmission parameter �. Main shocks are the events
of their size greater than s�sc=100. The time t is measured with
the occurrence of a main shock as an origin. Aftershocks and fore-
shocks are defined as events of arbitrary sizes which occur in the
vicinity of main shock with the range parameter rc=10.
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a magnified view of the main peak for the case of �=0.17.
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events”� possess a power-law-like size distribution very
much similar to those observed for other aperiodic events.
This is demonstrated in Fig. 4, where the size distribution of
the peak events is given for the case of �=0.23, in compari-
son with the one for general events of s�sc=100. �At this �
value, �=0.23, a slight excess is discernible at larger s as
was already noticed in Fig. 1 above, both for all events and
for the peak events.� In that sense, the peak events certainly
appear to be characteristic in time, but not necessarily so in
their size.

The fact that the peak events possess a power-law-like
broad distribution in their size s also explains our observa-
tion of Fig. 3 that the computed P�T� exhibits a multipeak
structure consisting of subpeaks located at multiples of
T�=1−4�. Reflecting such a size distribution of peaks
events, many peak events occur with their size above our
size threshold sc slightly. In such a situation, the “next” event
occurring at T=T� after the first one might occur with its size
slightly below the threshold sc, and the “second-next” event
occurring T=2T� after the first one might be counted as the
next event in measuring the local recurrence time �remember
that the peak in P�T� has a small but finite width�. In Ref.
�18�, the major cause of the multipeak structure of P�T� was
ascribed to the one associated with the range parameter rc,
but we now have found that the major cause of the multipeak
structure of P�T� is the one associated with the size threshold
sc rather than with the range parameter rc: Refer also to our
analysis of the asperity characteristics in Sec. IV.

We have examined whether there exists appreciable dif-
ference between the peak events and the other events with
regard to their aftershock/foreshock properties. However,
both types of events accompany very much similar Omori-
law-type aftershock/foreshock sequences. Concerning their
aftershock/foreshock sequences, we cannot identify any ap-
preciable difference between the peak events and the other
events.

In Fig. 5, we show for several � values the time-averaged
stress distribution in the steady state D�f� averaged over all
sites of the lattice. Though the system is loaded with a con-
stant rate, the stress distribution is not uniform in the interval
�0,1�. Rather, for the case of �	0.2, D�f� exhibits distinct

steps. For �	0.2, these steps appear at appropriate multiples
of the transmission parameter �, i.e., at f =n� for f �1 /2 and
at 1−n� for f �1 /2, with n being an integer. For larger
��0.2, no step seems to appear at multiples of �, but D�f�
still exhibits a noticeable structure. In this sense, the stress
distribution also exhibits a characteristic feature. Such a
structure in D�f� is likely to be originated from large-scale
avalanches.

IV. SIMULATION RESULTS ON THE ASPERITY
CHARACTERISTICS

In fact, the peak events, or near-periodic events, are
closely related to the asperity-like phenomena �18�. The as-
perity represents a cluster of sites which ruptures simulta-
neously in a given avalanche, repeating many times with the
same epicenter site and with almost the same period
T=T�=1−4�, corresponding to the peak of the local
recurrence-time distribution function P�T�.

We show in Fig. 6 typical snapshots of the stress distribu-
tion immediately before and after an asperity event for the
case of �=0.2. Within the asperity region, uniform stress
state is formed before the rupture, giving rise to a synchro-
nized simultaneous rupture. Then, a discontinuous drop of
the stress within a rupture zone �asperity� occurs before and
after the avalanche. In fact, the same cluster except for a
minor difference ruptures again after the time T�. Such a
rhythmic recurrence of rupture often repeats more than ten
times. There is a clear tendency that such “repeating times”
of the asperity sequence tend to be greater for smaller �. In
particular, the asperity-like phenomena themselves hardly
exist near the conservation limit �remember that the local
recurrence-time distribution P�T� shown in Fig. 3 no longer
exhibits a peak at �=0.245�.

The stress distribution in the asperity region tends to be
“discretized” to certain values. In Figs. 7�a� and 7�b�, we
show for the case of �=0.17 the stress distribution D�f� of
the asperity sites immediately before �a� and after �b� an
avalanche, averaged over asperity events. We define here the
asperity as a ruptured cluster of its size s�sc=100 belonging
to the peak event of the local recurrence-time distribution

FIG. 4. �Color online� The size distribution of the peak events as
compared with the one of general events of s�sc=100. The trans-
mission parameter is �=0.23. The peak event is defined here as an
event of its size greater than s�sc=100 with its recurrence time
belonging to the main peak of the local recurrence-time distribution
function P�T� given in Fig. 3.
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function. As can be seen from the figure, D�f� now consists
of several “spikes” located at appropriate multiples of the
transmission parameter �, i.e., at 1−n� before the rupture
and at f =n� after the rupture, with n being an integer. One
can now see that the structure found in the time-averaged
stress distribution function shown in Fig. 5 is originated from
those spikes associated with the asperity event.

In fact, such a tendency of “quantization” or spikes also
exists in the non-asperity events as well, but in a less pro-
nounced manner. In Fig. 8, we show the stress distribution at
the time of toppling of each site contained in the rupture
zone for both cases of the asperity events and the non-
asperity events. The stress at the time of toppling generally
exceeds the threshold value fc=1 �except for an epicenter
site where it is identically unity�. As can be seen from Fig. 8,
the stress value at the time of toppling is more concentrated
on the threshold value fc=1 for the asperity events than that
for the non-asperity events, the latter exhibiting a broader tail
toward larger values of f �1.

Furthermore, as the asperity events repeat, the tendency of
the stress concentration is more and more enhanced. In Fig.
9, we show the time sequence of the stress distribution at the
time of toppling for the asperity events. As the asperity
events repeat, the stress distribution tends to be narrower,
being more concentrated on the threshold value fc=1. In fact,
one can show that the stress distribution at the time of top-
pling tends to be more concentrated on the threshold value
fc=1 as the asperity events repeat. Namely, once each site
starts to topple more or less at similar stress values close to
the threshold value fc=1, this tendency is more and more
evolved as the asperity events repeat. The stress concentra-

(a) (b)

(c) (d)

FIG. 6. �Color online� Snapshots of the stress distribution for the
case of �=0.2; �a� immediately before a large event at time t= t0,
�b� immediately after this event, �c� immediately before the follow-
ing event which occurs at time t= t0+T� �T�=0.2�, and �d� immedi-
ately after this second event. Two events are of size s=15891 and
s=15910 on a L=256 lattice. The region surrounded by red bold
lines represents the rupture zone, while the star symbol represents
an epicenter site which is located at the tip of the rupture zone.

(a)

(b)

FIG. 7. �Color online� The stress distribution D�f� of each site
contained in the rupture zone of the asperity event, just before �a�
and after �b� the asperity event. An asperity event is defined here as
an event of its size greater than s�sc=100 belonging to the main
peak of the local recurrence-time distribution function. The trans-
mission parameter is �=0.17. The inset is a magnified view of the
main peak.

FIG. 8. �Color online� The stress distribution D�f� at the time of
toppling of each site contained in the rupture zone of large events
with s�sc=100. The data are given for both cases of the asperity
events and the non-asperity events. An asperity event is defined
here as an event of its size greater than s�sc=100 belonging to the
main peak of the local recurrence-time distribution function. The
transmission parameter is �=0.17.
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tion tends to be self-organized. In such a situation, all sites in
an asperity cluster �except for an epicenter site� possess the
stress value close to 1−� just before the event starts. Assume
that an arbitrary site involved in the interior of the asperity
cluster possesses the stress value f =1−�+x with x
1, just
before the event starts. One can show that, when this event is
over and the interseismic period of T�=1−4� has passed, the
stress value at this site becomes 1−�+��x with �� being less
than unity under rather general conditions, as long as the
stress values at neighboring sites just before the event are
also close to 1−�. Details of the derivation are given in
Appendix.

We note that, if all sites topple at the stress value close to
the threshold fc=1 in the asperity events, it immediately ex-
plains our observation that the period of the asperity events,
corresponding to the main peak of the local recurrence-time
distribution, is equal to T=T�=1−4�. To see this, one only
needs to remember the conservation law of the stress, i.e., the
stress dissipated at the time of toppling, which is 1−4� per
site if the toppling occurs exactly at f =1, should match the
stress loaded during the interval time T.

Next, we examine where in the rupture zone an epicenter
site is located for both cases of the asperity event and the
non-asperity event. We classify the site i into four types ac-
cording to the number ni of its nearest-neighbor sites which
topple during a given avalanche. The cases ni=1,2 ,3 and 4
typically represent an epicenter site lying at the tip, corner,
boundary and interior of the rupture zone, respectively: See
Fig. 10. In Fig. 11, we show on a semilogarithmic plot the
rate of each type of an epicenter site of large events with
s�sc=100, for the asperity events �a� and for the non-
asperity events �b�. The transmission parameter is �=0.20.
As can be seen from Fig. 11, there is a pronounced tendency
that the epicenter site is located at smaller ni, particularly at
ni=1 corresponding to the tip of the rupture zone. This ten-
dency is more enhanced in the asperity events than in other
events. It turns out that the interior site with ni=4 can never
be an epicenter of the asperity events while a small number
of such events ��10%� exist for the non-asperity event.

Clear difference exists between the asperity and the non-
asperity events in other quantities as well. In Fig. 12, we

show for the case of �=0.2 the temporal variation of the
frequency of both the asperity events and the non-asperity
events observed in a typical run of a 512�512 lattice. The
frequency is defined here as the number of each type of

FIG. 9. �Color online� The time sequence of the stress distribu-
tion D�f� at the time of toppling of each site contained in the rup-
ture zone of the asperity events. An asperity event is defined here as
an event of its size greater than s�sc=100 belonging to the main
peak of the local recurrence-time distribution function. The trans-
mission parameter is �=0.17. As the events repeat, the stress dis-
tribution at the time of toppling gets more and more concentrated
on the borderline value fc=1.

=1 =2

=3 =4

n n

n n

i i

i i

FIG. 10. �Color online� Four types of epicenter sites at the cen-
ter of the figure �blue�. Shaded region represents the rupture zone.

(a)

(b)

FIG. 11. �Color online� The rate of the type of epicenter sites,
for the asperity events �a� and for other non-asperity events �b�,
plotted on a semilogarithmic scale. The abscissa ni represents the
number of nearest-neighbor sites contained in the rupture zone: See
Fig. 10. The transmission parameter is �=0.20.
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events occurring in a time bin of one T� �=1−4�=0.2�. As
can be seen from the figure, the frequency of the non-
asperity events fluctuates around a constant value, whereas
that of the asperity events exhibits much wilder temporal
variation, occasionally vanishing altogether. In other words,
there appear in turn an active period and a calm period in the
asperity events, while no such distinction seems to exist in
the non-asperity events.

The asperity events tend to cluster not only in time but
also in space. In Fig. 13, we show for the case of �=0.2
typical spatial distributions of both the asperity events and
the non-asperity events on a 256�256 lattice. The rupture
zone of both types of events, which occur in a time period of
one T�, are shown together with the epicenter site of the
asperity events. Figure 13�a� corresponds to the midst of the
“asperity period” where the frequency of the asperity events
takes its maximum, while Fig. 13�b� corresponds to the midst
of the “non-asperity period” where the frequency of the as-
perity events takes its minimum. As can be seen from Fig.
13�a�, the asperity events tend to cluster spatially: In particu-
lar, the epicenter site of the asperity event, which tends to lie
at the tip or at the corner of the rupture zone, is contiguous
either to the rupture zone of other asperity events or to the
area of no �small� events, but not contiguous to the rupture
zone of non-asperity events. Since the multi-toppling rarely
occurs in the model, this observation means that the stress
the epicenter site of the asperity event receives from its
neighboring sites tends to be nearly equal to �. There also
exists a tendency that the asperity cluster lies in the interior
of the lattice rather than near the boundary, as was already
noticed in Ref. �18�.

In the non-asperity period, by contrast, large events are
dominated almost exclusively by the non-asperity events:
See Fig. 13�b�. Since the number of the non-asperity events
is more or less kept constant in time as can be seen from Fig.
12, the size of the non-asperity cluster tends to get larger in
the non-asperity period, which seems consistent with the pat-
tern observed in Fig. 13�b�.

In the following, we shall concentrate on the asperity
events. An epicenter site topples at the beginning of a given

event releasing its stress to zero. If the epicenter site i is of
the type ni �ni=1,2 ,3 ,4�, it receives the stress from its
nearest-neighbor sites ni times during this asperity event.
Since any toppling in the asperity event occurs close to the
borderline stress fc=1, the stress value the epicenter site re-
ceives during this event is equal to ni�. As mentioned, in
asperity events, the same site i is likely to be an epicenter of
the next event again, i.e., reaches the threshold stress fc=1
earlier than any other site in the rupture zone of this event.
This might sound a bit surprising at first, since, as shown in
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FIG. 12. �Color online� The time variation of the frequency of
the asperity events and of the non-asperity events in a typical run of
a 512�512 lattice. The transmission parameter is �=0.2. The fre-
quency is defined by the number of each type of events which occur
in a time bin of one T� �=1−4�=0.2�.

(a)

(b)

FIG. 13. �Color online� The spatial distribution of large events
in a typical run of a 256�256 lattice. The rupture zone of both the
asperity events and the non-asperity events, which occur in a time
period of one T�, are shown. Panel �a� corresponds to the midst of
the “asperity period” where the frequency of the asperity events
takes its maximum, while panel �b� corresponds to the midst of the
“non-asperity period” where the frequency of the asperity events
takes its minimum. The transmission parameter is �=0.2. Dark blue
area represents either only small events of its size s�sc=100 or no
event occurring during the time interval of T�. Thin orange �thick
gray� area represents asperity �non-asperity� cluster of its size s
�sc=100. The red bold line represents the rupture zone of each
large event, while green square represents an epicenter site of the
asperity event.
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Fig. 11, an epicenter site tends to be located at the tip posi-
tion of the rupture zone with ni=1, which means that the
epicenter site is in a low stress state just after the preceding
event. However, such an epicenter site rapidly develops its
stress not only by stress loading but also by receiving stress
via the topplings of its 4−ni nearest-neighbor sites not be-
longing to the rupture zone of the preceding event. Here
recall that the stress transfer the epicenter site i receives from
the nearest-neighbor sites during the interval time tend to be
nearly equal to �.

Then, one can see the reason why the same epicenter site
becomes an epicenter of the next asperity event again. The
stress the epicenter site i receives from the one-site events
�or other asperity events� during the interval time is equal to
�4−ni�� so that the time needed for the site i to reach the
threshold stress fc=1 is T=1−ni�− �4−ni��=1−4�=T�,
which is just the interval time of the asperity events observed
in the local recurrence-time distribution.

Next, let us consider the stress at an arbitrary site i in the
rupture zone other than the epicenter site. We suppose that,
during a given asperity event, mi among ni nearest-neighbor
sites topple before the site i and the remaining ni−mi
nearest-neighbor sites topple after the site i. By definition,
1	mi	ni. Then, the stress at the site i just after the asperity
event is �ni−mi��. The stress the site i receives during the
interval time from the sites not belonging to the rupture zone
of the preceding event is �4−ni��. Hence, the time
needed for the site i to reach the threshold stress fc=1 is
T=1− �ni−mi��− �4−ni��=1−4�+mi�, which is always
greater than the corresponding time for the epicenter site
estimated above, 1−4�, since mi�1. Thus, an epicenter site
of the preceding asperity event tends to be an epicenter of the
next asperity event again.

One sees that the value of ni does not matter in the proof
given above. Therefore, our observation in Fig. 11 that a tip
�or a corner� site tends to be an epicenter of the avalanche
cannot be explained solely from the above argument. At the
moment, we do not know the reason why an epicenter site
tends to lie at the tip or the corner of the rupture zone rather
than in its interior in the OFC model, though the tendency is
quite distinct in our numerical simulation.

The asperity events repeat over many times, but they do
not last forever. After all, our model is a spatially uniform
model so that no interior site can be special in the long-time
limit. Then, we also study the manner how the asperity se-
quence is interrupted. For the asperity-sequence interruption,
there seem to be two patterns. The first pattern is a detach-
ment of the asperity. Namely, one big asperity is divided into
two parts, each of which collapse not at the same time, but at
different times, though still mutually close in time. An ex-
ample of this pattern is given in Fig. 14. The second pattern
is an enlargement of the asperity. Namely, a given asperity
event gets involved in other larger event becoming a part of
it, which can occur when the asperity fails to rupture at the
regular period T�=1−4� due to some reason. An example of
the latter pattern is given in Fig. 15.

V. SUMMARY AND DISCUSSION

We studied the properties of the OFC model of earth-
quakes. In this model, characteristic and critical properties
coexist in an intriguing manner. We computed the magnitude
distribution, the recurrence-time distribution, the stress dis-
tribution, and investigated various asperity characteristics in
some detail. Interestingly, the OFC model exhibits not only
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FIG. 14. �Color online� A typical pattern of the asperity-
sequence interruption, where one big asperity is divided into two
parts. The transmission parameter is �=0.2. Panels �a�–�c�
correspond to the time t= t0 �a�, t= t0+0.199978 �b�, and
t= t0+0.199979 �c�. The region surrounded by the red bold line
represents the rupture zone of the first event.
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FIG. 15. �Color online� Another typical pattern of the asperity-
sequence interruption, where a given asperity event gets involved in
other larger event becoming a part of it. The transmission parameter
is �=0.2. Panels �a�–�c� correspond to the time t= t0 �a�,
t= t0+0.2000 �b�, and t= t0+0.4248 �c�. The region surrounded by
the red bold line represents the rupture zone of the first event.
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well-known critical features such as the GR law and the
Omori law, but also pronounced characteristic or periodic
features, most notably exemplified in the occurrence of
asperity-like phenomena. We have found that the stress dis-
sipation, i.e., the nonconservation of the stress, is essential
for the asperity-like phenomena to occur. We have also
shown that a key ingredient in the asperity formation is a
self-organization of the highly concentrated stress state. Such
a stress concentration immediately explains why the interval
time of the asperity events is equal to 1−4�, and why the
same site becomes an epicenter in the asperity sequence. The
asperity-like events in the OFC model closely resemble those
familiar in seismology �1�, in the sense that almost the same
spatial region ruptures repeatedly with a common epicenter
site and with a common period.

Indeed, apparent coexistence of critical and characteristic
features is a notable feature of real earthquake phenomena as
well. The critical features are most typically seen in various
power laws observed in statistical properties of earthquakes,
e.g., the GR law and the Omori law as described. Typical
examples of characteristic features of real earthquakes may
be, e.g., the asperities observed along the subduction zone in
northeastern Japan, particularly repeating earthquakes off
Kamaishi �22,23�. In seismology, the concept of earthquake
cycles has been used in long-term probabilistic earthquake
forecasts �1,24–26�.

Thus, the OFC model, though an extremely simplified
model, may capture some of the essential ingredients neces-
sary to understand apparent coexistence of critical and char-
acteristic properties in real earthquakes. In seismology, the
origin of the asperity is usually ascribed to possible inhomo-
geneity in the material property of the crust or in the external
conditions. We wish to stress here, however, that in the
present OFC model there is no built-in inhomogeneity in the
model parameters nor in the external conditions, yet the “as-
perity” is self-generated from the spatially uniform
evolution-rule and the model parameter.

As mentioned, the asperity in the OFC model is not a
permanent one. After all, the model is spatially uniform.
Meanwhile, we have observed that the asperity events tend
to cluster both in time and in space. In particular, the asperity
events exhibit “active” and “calm” periods in turn. In its
active period, the asperity often exists stably over many
earthquake recurrences. Thus, one needs to keep in mind a
possibility that, even in the asperity formation of real seis-
micity, inhomogeneity might play only a secondary role.

Of course, real crust is certainly inhomogeneous, and it is
important to clarify how such inhomogeneity affects, or does
not affect, the critical and the characteristic properties of
earthquakes. In this context, it might be interesting to study
the corresponding properties of the inhomogeneous OFC
model in comparison with those of the present homogeneous
OFC model. Among others, the question whether the
asperity-like phenomena and the associated characteristic
properties would survive the build-in inhomogeneity or not
is of particular interest. The answer to this question seems to
be “yes,” although some of the properties change from the
ones observed for the present homogeneous model and its
details often depend on the specific parameter the model. The
properties of such inhomogeneous OFC model will be re-
ported in our forthcoming publication �27�.
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APPENDIX

In this appendix, we show for the asperity event that the
stress distribution at the time of toppling tends to concentrate
more on the threshold value fc=1 as the asperity events re-
peat.

First, we look at the site j which is the nearest neighbor of
an epicenter site 0. Let the stress of the site j be
f j =1−�+x. We assume 0�x
1, which is equivalent to as-
suming that this site topples nearly at its threshold value
fc=1. Among the four nearest-neighbor sites of the site j,
one is an epicenter 0. The epicenter site always topples at
f = fc=1 and distribute the stress � to its nearest-neighbor
sites including j. Let the stress of other three nearest-
neighbor sites of the site j be f i=1−�+x+�ix �i=1,2 ,3�:
See Fig. 16. After the toppling of the epicenter site 0, the site
j reaches the stress 1+x�1 and topples. The three
nearest-neighbor sites of the site j then reach the stress
f i+�f j =1+x+�x+�ix �i=1,2 ,3� and topple. The site j then
receives the stress from the sites 1, 2, and 3, reaching the
stress 3��1+x+�x�+���1+�2+�3�x. As long as the site j
does not topple again in this asperity event, which is usually
the case, this is the stress value at the site j immediately after
this asperity event. After the interseismic period T�=1−4�,
the stress at the site j becomes 1−�+3��1+�+��x with
����1+�2+�3� /3. Then, the condition of the stress concen-
tration occurring at the site j is 3��1+�+���1. Namely, as
the asperity events repeat, the stress at the time of toppling
gradually approaches the threshold value fc=1 if the condi-
tion ���c= 1

3� − �1+�� is fulfilled.
Now, we extend the above discussion to more general

situation where, among the four nearest-neighbor sites of the
site j, �i� one site 0 topples before the site j and three other
sites 1, 2, and 3 topple after the site j. Here we consider the
site j to be an interior site with all its nearest-neighbor sites
contained in the rupture zone of the asperity event. Let the
stress of the site j be f j =1−�+x as above, the stress of the
site toppling before j be f0=1+x+�0x, and the ones after j

FIG. 16. Illustration of neighboring toppling sites in the rupture
zone, with its initial stress values.
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be f i=1−�+x+�ix �i=1,2 ,3�. After the toppling of the site
0, the site j reaches the stress 1+x+��1+�0�x and topples.
The three neighboring sites 1, 2, and 3 then reach the stress
f i+�f j =1+x+�x+�ix+�2�1+�0�x �i=1,2 ,3� and topple.
The site j then receive the stress from the sites 1, 2, and 3,
reaching the stress 3��1+x+�x+�2x�+3��x+3�3�0x. As
long as the site j does not topple again in this asperity event,
which is usually the case, this is the stress value at the site j
just after this asperity event. After the period T�=1−4�, the
stress at the site j becomes 1−�+3��1+�+�2+�+�2�0�x.
Then, the condition of the stress concentration occurring at
the site j is ���c= 1

3� − �1+�+�2�1+���	 where ��=�0.
One can repeat similar discussion to the other cases

where, among the four nearest-neighbor sites of the site j, �ii�
two sites 0 and 1 topple before the site j and the two other
sites 2 and 3 topple after the site j, �iii� three sites 0, 1, and
2 topple before the site j and one other site 3 topples
after the site j, and �iv� all four sites topple after the site j. In
the case �ii�, the condition of the stress concentration is
���c= 1

2� − �1+�+2�2�1+���	 with �= ��2+�3� /2 and
��= ��0+�1� /2. In the case �iii�, the condition of the stress
concentration is ���c= 1

� − �1+�+3�2�1+���	 with �=�3
and ��= ��0+�1+�2� /3. The case �iv� is exceptional, where
the stress of the site j after the event is always zero. The �
dependence of �c is shown in Fig. 17 in the above cases of
�i�–�iii� with ��=0.1. In fact, the �c value is rather insensitive
to the �� value, since, in the expression of �c, the coefficient

of the �� term is smaller than the leading term by factor of
O��3� with ��0.25.

The above analysis indicates that, once each site starts to
topple more or less at similar stress values close to the
threshold value fc=1, this tendency is more and more
evolved as the asperity events repeat, i.e., the stress concen-
tration tends to be self-organized.
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FIG. 17. �Color online� The threshold value for the stress con-
centration, �c, plotted versus the transmission parameter � in the
case of ��=0.1. The three processes �i�–�iii� are described in the
text. One can see that the stress concentration process, expected at
���c, is readily operative in most cases, since �c is large except for
the process �i� close to the conservation limit �=0.25.
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